PAGODANE - AN UNDECACYCLIC $\mathrm{C}_{20} \mathrm{H}_{20}$-POLYQUINANE
 W.-D. Fessner and H. Prinzbach*
 Chemisches Laboratorium der Universität Freiburg i. Br., BRD

G. Rihs

Ciba-Geigy AG, Basel, Schweiz

Pagodanc, a highly symmetrical undccacyclic $C_{20} H_{20}$-polyquinane, is efficiently synthesized starting from "isodrin".

The highly symmetrical undecacyclic $C_{20}{ }^{H} 20^{\text {-hydrocarbon }} \mathbf{1 ,}$ for which we propose the trivial name "pagodane" 1), is structurally closely related to its isomer dodecahedrane 3^{2}), a relationship which might be used for the transformations $1 \rightarrow 2^{3)} \rightarrow 3^{4)}$.

1

2

3

The synthesis of 1 , as outlined in the Scheme, starts with the $C_{20} H_{20}$-tetraene 6, which we have made available through [6+6]-photocycloaddition of the dibenzo-isomer 5 5 5^{5}. The attraction of this approach is enhanced in that 5 is now produced in a five-step sequence based on the industrial chemical "iso-

drin" $4^{7)}$ with an overall yield of 55%, and that the photoreaction exclusively yields 6 (30% transformation) ${ }^{8}$).

In 6 the two diene units are ideally oriented for a domino-Diels-Alder reaction. Indeed, in boiling benzene the thermally rather stable 6^{6}) quantitatively and stereospecifically adds one equivalent of maleic anhydride. Under these conditions no trace of the endo-[4+2]-adduct 7 could be found (${ }^{1} H-N M R$), as it is quickly transformed into 8 (mp $184^{\circ} \mathrm{C}$) ${ }^{9}$). In the degradation of the corresponding diacid to the ${ }^{C} 2 v^{-d i e n e ~} 9\left(m p 205^{\circ} \mathrm{C}\right.$) a reproducible 70% yield is achieved with $\mathrm{Cu}(\mathrm{I})$ oxide ${ }^{10)}$ (30% with $\mathrm{Pb}(I V)$ tetracetate). The ring contrac-

Scheme

(i) maleic anhydride/benzene, refl, 5 h ; (ii) $K 0 \mathrm{H} / \mathrm{methanol}, \mathrm{ref1.}, \mathrm{10h;}$
(iii) $\mathrm{Cu}_{2} \mathrm{O} / 2,2^{\prime}$-dipyridyl/quinoline, $180^{\circ} \mathrm{C}, 36 \mathrm{~h}$; (iv) $\mathrm{BH} 3 / \mathrm{THF}, 0^{\circ}-20^{\circ} \mathrm{C}, 4 \mathrm{~h}$; $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$; (v) $\mathrm{CrO}_{3} / \mathrm{pyridine} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$, 1 h ; (vi) $\mathrm{HCOOCH} / \mathrm{NaH} / \mathrm{THF}, 20^{\circ} \mathrm{C}$, 48h; (vii) TosN $/ \mathrm{NEt}_{3} / \mathrm{THF}, 20^{\circ} \mathrm{C}$, 2 h ; (viii) THF/H2 $\mathrm{O}, 0^{\circ} \mathrm{C}$, Vycor, high-pressure Hg -lamp; (ix) $\mathrm{Pb}(\mathrm{OAC})_{4} / \mathrm{I}_{2} / \mathrm{CCl}_{4}$, refl., hv; (x) Na-K/THF/tert.-butanol, $20^{\circ} \mathrm{C}$, 12 h .
tions are performed using standard procedures: after hydroboration, oxidation (two isomeric diketones, e.g. 10, 92%), formylation (80%) and diazotization (65%) 11), the bis-diazoketones (e.g. 11) are photolysed in THF/water or dry methanol. Within the analytical limits (3%) only the endo,endo-diacid $\mathbf{1 2}$ (90% isolated) or the endo, endo-diester $13\left(95 \%\right.$ isolated, mp $269^{\circ} \mathrm{C}$) are observed. Bis-iododecarboxylation 12) of 12 gives the isomeric diiodides 14 (80%), which are quantitatively reduced to $1\left(\mathrm{mp} 243^{\circ} \mathrm{C}, \mathrm{m} / \mathrm{e}=260\left(\mathrm{M}^{+}, 100 \%\right)\right.$). The $\mathrm{D}_{2 h^{-}}$ symmetry is manifested by the simplicity of the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NmR}$ spectra $\left(\mathrm{CDCl}_{3}\right): \delta=1.58(\mathrm{AB}, 8 \mathrm{H}), 2.24(\mathrm{~m}, 8 \mathrm{H}), 2.60(\mathrm{~m}, 4 \mathrm{H}) ; \delta=62.9(\mathrm{~s}, 4 \mathrm{C}), 59.6$ $(\mathrm{d}, 4 \mathrm{C}), 42.7(\mathrm{~d}, 8 \mathrm{C}), 41.9(\mathrm{t}, 4 \mathrm{C})$.

From consideration of molecular models and from empirical force field calculations 13), it emerges that the strain inherent in the pagodane molecule should cause appreciable lengthening of the C6-C7 (C16-C17) and C1-C2 (C11C12) bonds, the latter being the ones to be broken on the way to 3 3^{14}. The X-ray analysis of the diester 13 (Fig.) 15) provides pertinent data and also

Fig. Molecular structure of 13. Selected bond lengths:

$$
\begin{array}{llll}
\mathrm{C} 6-\mathrm{C} 7 & (\mathrm{C} 16-\mathrm{C} 17) & : 1.617(6) & (1.625(6)) \AA \\
\mathrm{C} 1-\mathrm{C} 2 & (\mathrm{C} 11-\mathrm{C} 12) & =1.585(5) & (1.593(5)) \AA \\
\mathrm{C} 1-\mathrm{C} 11 & (\mathrm{C} 2-\mathrm{C} 12) & : 1.548(5) & (1.555(5)) \AA
\end{array}
$$

confirms the endo position of the substituents. The prerequisites are thus given for the synthesis of bridged derivatives e.g. of type 15.

$12-\rightarrow$

We wish to express our gratitude to Dr. G. Sedelmeier for his interest and practical advice. Financial support by the "Deutsche Forschungsgemeinschaft" and the "Fonds der Chemischen Industrie" as well as a generous gift of "isodrin" by the Deutsche Shell Chemie GmbH are gratefully acknowledged.

1) Undecacyclo[9.9.0.0 $\left.0^{1,5} \cdot 0^{2,12} \cdot 0^{2,18} \cdot 0^{3,7} \cdot 0^{6,10} \cdot 0^{8,12} \cdot 0^{11,15} \cdot 0^{13,17} \cdot 0^{16,20}\right]$ eicosan.

2) L.A. Paquette, R.J. Ternansky, D.W. Balogh and G. Kentgen, J. Am. Chem. Soc. 105, 5446 (1983).
3) An unsymmetrical methyl derivative of 2 is known: L.A. Paquette, R.J. Ternansky, D.W. Balogh and W.J. Taylor, J. Am. Chem. Soc. 105, 5441 (1983).

4) For different approaches see: P.E. Eaton, Tetrahedron 35, 2189 (1979) , cit. 1it.; P. Deslongchamps and P. Soucy, ibid. 37, 4385 (1981); W.P. Roberts and G. Shoham, Tetrahedron Lett. 22, 4895 (1981); M.A. McKervey, P. Vibuljan, G. Ferguson and P.Y. Siew, J. Chem. Soc., Chem. Commun. 1981, 912; J.E. Baldwin and P.L.M. Beckwith, ibid. 1983, 279; G. Mehta and M.S. Nair, ibid. 1983, 439.
5) H. Prinzbach, G. Sedelmeier, C. Krüger, R. Goddard, H. - D. Martin and R. Gleiter, Angew. Chem., Int. Ed. Engl. 17, 271 (1978).

6) G. Secelmeier, Dissertation, Univ. Freiburg (1979).
7) S.B. Soloway, A.M. Damiana, J.W. Sims, H. Bluestone and R.E. Lidov, J. Am. Chem. Soc. 82, 5377 (1960).

8) W.-D. Fessner, Dissertation, Univ. Freiburg, in preparation.
9) The new compounds are characterized by elemental analysis and spectra (IR, MS, NMR).
10) R.A. Snow, C.R. Degenhardt and L.A. Paquette, Tetrahedron Lett. 1976 , 4447.
11) M. Rosenberger, P. Yates, J. B. Hendrickson and W. Wolf, Tetrahedron Lett. 1964, 2285; M. Regitz, F. Menz and J. Rüter, ibid. 1967, 739.
12) D.H.R. Barton, H.P. Faro, E.P. Serebryakov and N.F. Woolsey, J. Chem. Soc. 1965, 2438.
13) N.L. Al1inger, J. Am. Chem. Soc. 99, 8127 (1977). We thank Dr. H. -D. Beckhaus for advice in using the QCPE Program No. 395.
14) Hydrogenolysis of the very long C6-C7/C16-C17 bonds in 1 would lead to a "bis"-[4]peristylane; see L.A. Paquette, A. R. Browne, C.W. Doecke and R.V. Williams, J. Am. Chem. Soc. 105, 4113 (1983).
15) Crystals are monoclinic, space group $\mathrm{P}_{2} /{ }_{\mathrm{c}}^{\mathrm{c}}$, $\mathrm{a}=17.251, \mathrm{~b}=6.073$, $\mathrm{c}=$ $16.512 \AA, \beta=92.24^{\circ}, Z=4$. Number of reflections used in least squares refinements: 2327. Final R-factor: 0.062 .
(Received in Germany 11 January 1983)

